Duke | Facilities Management Utilities & Engineering Services

Steam Heating System

DU-101-PP

+ Purpose

 The purpose of the Operations and Maintenance Training Program is to train Operations and Maintenance Technicians in the operation of the Duke University Chiller and Steam Systems

+ Objectives

- Trainees will demonstrate knowledge of
 - Steam Heating System Components
 - Steam Heating System Components Operation
 - Steam Heating System Configuration
 - Steam Heating System Controls and Instrumentation

STEAM HEATING SYSTEM

OVERVIEW

- East Campus and West Campus Steam Plants supply high pressure steam to heat Campus and Medical Center facilities
- Steam is delivered through the Underground Steam and Condensate Distribution System
 - Steam piping is routed through tunnels and manholes (steam vaults)
 - Drip leg stations remove condensate from the steam
 - Strainers remove dirt and particulates from condensate
 - Steam traps remove air and CO₂ from condensate
- In each building a Pressure Reduction Valve (PRV) Station reduces steam pressure to meet requirements of the building heating system

COMPONENTS

- High Pressure Steam Headers
- Underground Steam and Condensate Delivery System
 - Utility Tunnels
 - Steam Vaults
 - Drip Leg Stations
 - Steam Traps
 - Steam Pit Entries
- Medium Pressure and Low Pressure Systems
 - PRV Stations

HIGH PRESURE STEAM HEADERS

- ✦ Located
 - West Campus Steam Plant
 - East Campus Steam Plant
- Regulate steam from online boilers for underground steam distribution

STEAM HEATING SYSTEM

+ WEST CAMPUS STEAM PLANT

✦ EAST CAMPUS STEAM PLANT

HIGH PRESSURE STEAM HEADER

+ HPS Header receives steam from all online boilers

STEAM HEATING SYSTEM

HIGH PRESSURE STEAM HEADER

 Sensors at the HPS Header send data on the steam to the Control Room

S AC			DUKE UTILITIES: MONITORING						
OUTSIDE AIR TEMP	PLANT	STEAM HEADER PSIG	PLANT STEAM % LOAD	PLANT STEAM USAGE LBH	MAKEUP H2O GPM	MAKEUP H2O 3 HR AVG GPM	% RETURN	% RETURN 3 HR AVG	WEST
HUMOITY 86.1 % ENTHALPY 32.2 BTULB	EAST	126.7	22.5	2628	14.8	15.2	75.65	74.14	STEAM (kLB)
	WEST	125.8	18.8		43.9	29.4	77.06	80.09	GAS (kCF)
	TOTAL		19.7		58.7	45.0	76.86	81.84	OIL (GAL)
STATUS	BOILER	STEAM OUTPUT LBH	DRUM PRESSURE PSIG	OXYGEN	OIL FLOW	GAS FLOW	THERMAL EFFICIENCY %	FLUE GAS TEMP IN "F	WATER (GAL)
MONITORING									POWER
	1	40376	128.5	3.6	0.0	53475	73.6	441	EFFICIENCY
EAST CAMPUS WEST CAMPUS	2	38664	130.5	4.0	0.0	51274	73.3	449	
	3	0	124.9	22.5	0.0	6959	0.0	268	EAST
	4	0	61.7						STEAM (kLB)

STEAM HEATING SYSTEM

✦ QUESTION

Where are HPS Headers located?

- East Campus and West Campus Steam Plants
- All steam and chiller plants
- Campus and Medical Center buildings
- Chiller Plants 1 and 2

+ Answer

✦ East Campus and West Campus Steam Plants

✦ QUESTION

- What is the nominal pressure of steam leaving the HPS Header?
 - 75 psig
 - Less than 16 psig
 - 125 psig
 - 170 psig

+ ANSWER

+ 125 psig

✦ QUESTION

- Which boilers in a Steam Plant supply the High Pressure Steam Header?
 - All boilers all the time
 - Each boiler has its own HPS Header
 - All boilers that are on line

+ ANSWER

+ 125 psig

✦ STEAM VAULT

✦ Steam vaults are underground maintenance

STEAM VAULT

HPS Supply

- + 36 inch Manhole provides access for maintenance
- + Drip Leg Station drains condensate and cleans steam

Condensate Return

- + 24 inch Manhole provides access for maintenance of condensate return piping
- Sump and pump provide return of condensate drained from the supply steam

+ Junction

 HPS supply and condensate return from various lines can come together in a steam vault

STEAM HEATING STATION

✦ STEAM VAULT

✦ STEAM VAULT DRIP LEG STATION

- + Drip Pocket
- ✦ Strainer
- 🔸 Steam Trap

✦ STEAM VAULT DRIP LEG STATION

🔸 Drip Pocket

- Condensate forming as steam cools can cause water hammer, erosion of pipe, and pipe and equipment failure
- Condensate drops out of the stream as steam passes over the drip pocket.

STEAM VAULT DRIP LEG STATION

✦ Strainer

- + Condensate from the drip pocket passes through the strainer
- + Fine mesh screen collects dirt and particulates

✦ STEAM VAULT DRIP LEG STATION

🔸 Stream Trap

- + Air and CO₂ separate from the condensate and collect in the inverted bucket
- When the inverted bucket becomes buoyant, it rises, triggers the valve above the bucket, and the gases vent out the top of the Steam Trap

STEAM HEATING PLANT

✦ QUESTION

Steam Heating System Components

PRV Station

✦ Reduce pressure for buildings in two stages

- + Low Pressure Steam (LPS) for heating
- + Medium Pressure Steam (MPS) for services

✦ HPS HEADERS, EAST AND WEST STEAM PLANTS

- Steam from boilers is regulated in HPS Header
- Header supplies HPS to Underground Steam and Condensate System
- Steam pressure exiting plant is 125 psig

STEAM VAULT

- HPS steam enters Drip Leg Station
- ✤ Steam Trap removes air, CO2, dirt
- Drip Leg removes condensate

STEAM ENTRY PIT

- HPS enters Campus and Medical Center buildings at Steam Entry Pit
- Drip Leg removes condensate

PRV STATION

STEAM ENTRY PIT

- Condensate from heat heating goes to the Condensate Pump
- Condensate is returned to the Steam Plant

STEAM HEATING SYSTEM PROCESS FLOW

